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THEORY OF ELASTIC-PLASTIC DEFORMATION OF RANDOMLY REINFORCED 

COMPOSITE MATERIALS 

I. S. Makarova and L. A. Saraev UDC 539.378 

Using the methods of the mechanics of random inhomogeneous media, we study the elastic- 
plastic properties of a composite material containing randomly oriented ellipsoidal in- 
clusions. The analogous problem for composites with spherical inclusions and matrix mix- 
tures was solved in [I]. 

i. Let a composite material occupying volume V and bounded by surface S be formed of 
an elastic-plastic matrix and randomly oriented ellipsoidal inclusions of identical form. 
The governing equations for the materials of both components, bonded together with ideal 
adhesion, are given by 

sij = 2~m(e)eij, ~pp ~ 3Km%p, sij = 29f(e)eii, ~pp = 3Kyepp. (i.i) 

Here sij = o i.3 - (i/3)6 ijapp; ei'3 = ei'. ~ - (i/3)6ijgpp; ~ gij are the components of the 
stress and deformation tensors; ~m,f(e) are the plastic shear moduli; Km, f are the bulk 

moduli of the material components (Km, f = const); e = ~ijeij. The index m refers to the 

matrix material; f to that of the inclusions. 

We will describe the structure of the composite by using the indicator function <(3, 
which is equal to zero in the matrix volume V m and to unity in the inclusion volume Vf. In 
addition, the spatial position of the ellipsoids is given by a collection of indicator func- 
tions ~i(~, x~(r) ..... ~n(r). Each function Ks(r) is equal to unity in the volume V s of all el- 
lipsoids oriented in direction s and is equal to zero outside of this volume. Clearly 

• • By using <(r), (i.i) can be written in the form 

sij(r) = 2(gin(e) + (~t(e)-- 9m(e))• ), 
app(r) = 3(K~ + (K I --  K~)• ( 1 . 2 )  

All of the indicator functions, stresses and deformations are assumed to be statis- 
tically uniform and ergodic random fields, and their expectation values are replaced by 
volume-averaged values [2]: 

~---~ t .I / ( r ) d r ( s =  l, 2 . . . . .  n). </> = v I (r) dr, <f>"'J" = ~ vm,,,~ 

To find the macroscopic governing equations and the effective characteristics of these 
composites it is necessary to establish a connection between the macroscopic quantities <oij> 
and <sij>: 

(1.3) 

where Eijks are the components of the plastic moduli tensor, a function of the numerical 
characteristics of the random deformation field eij(r). Here and below an asterisk denotes 
the root mean square of the quantity. 
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Relations (1.3) are obtained by statistically averaging the system of equations for 
elastic-plastic deformation of a composite material. This system consists of (1.2), the 
equilibrium equation 

~,~ (r) = 0 

and the Cauchy formula 

2eu(r ) = u~,~(r) + u~,i(r), 

( 1 . 4 )  

( 1 . 5 )  

expressing the components of the tensor of small elastic-plastic deformations through the 
components of the displacement vector ui((r ). The boundary conditions for system (1.2), 
(1.4), and (1.5) are the conditions of homogeneity of the fluctuating quantities on the 
surface S of the volume V: /(r) : (]), r~S. 

In order to use the methods of the theory of elasticity for microscopically inhomo- 
geneous media to establish effective relations, it is necessary to linearize (1.2). As in 
[i], we replace, under the plastic modulus sign, each component of the deformation in the 
limit by its expectation value: 

~m,f (e) = ~m,I (era,y), em,f : V r (eij)m,f<e~y)m,f. 

Relations (1.2) take the form 

su( ~ = 2(~m + [g]• ), app(r) = 3(Kin + [Kl• ( 1 . 6 )  

Here  [~] = ~ f ( e f )  - ~m(em); [K] = Kf - K m. We n o t e  t h a t  f o r m u l a s  ( 1 . 6 )  which  a r e  l i n e a r  
w i t h  r e s p e c t  t o  t h e  l o c a l  f i e l d s  o i j ( r )  , E i j ( r ) ,  r em a in  p h y s i c a l l y  n o n l i n e a r ,  s i n c e  t h e  
n u m e r i c a l  c h a r a c t e r i s t i c  o f  t h e  random f i e l d  ~ i j ( r )  e n t e r s  in  a random f a s h i o n  i n t o  t h e  
r i g h t - h a n d  s i d e s  o f  t h e s e  r e l a t i o n s .  

With t h e  h e l p  o f  G r e e n ' s  t e n s o r  

Gia(r) 8~itm(em )~ ih,pP--3Km+4~m@m),5k ], r = l r l  

Eqs. (1.4)-(1.6) reduce to a system of integral equations 

= ( 1 . 7  
V 

where  Thl(~ = - - (2 [~ ]ehz (~  + 8at[K]epp(r))• t h e  p r i m e s  d e n o t e  f l u c t u a t i o n s  o f  t h e  q u a n t i t i e s  
in  t h e  volume V. 

We now c a l c u l a t e  t h e  m a c r o s c o p i c  s t r e s s  < o i j > .  To do t h i s ,  we a v e r a g e  ( 1 . 6 )  o v e r  Y 
and a p p l y  t h e  m e c h a n i c a l  mix ing  r u l e  t o  t h e  volume o f  t h e  e l l i p s o i d s  Vs: 

<so> = 2~m <e~j> + 2 [~] ~ c,<e~j>~, 

<%v> = 3Kin <%p> + 3 [K] ~ r~ <epp>~ ( i .8)  

(c s = Vs V-I is the volume content of ellipsoids of direction s). Formulae (1.8) show that 
to establish macroscopic governing equations for the Composite, the averages over V s of the 
deformations <sij>s are found from the well-known relations [i] 

--I/ t i n  

after determination of <<'sS'ij>. We compute this value with the help of (1.7). 
ing by K's(r) and averaging over V, we obtain 

V 

To compute  t h i s  i n t e g r a l ,  we u se  t h e  f a c t  t h a t  t h e  f u n c t i o n  K ' s ( r )  d e s c r i b e s  o n l y  e l l i p -  
s o i d s  o f  one  o r i e n t a t i o n ,  and we assume t h a t  t h e  c o r r e l a t i o n  f u n c t i o n  in  t h e  i n t e g r a n d  has  
t h e  form 

(1.9) 
Multiply- 
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(a~: are the semiaxes of the ellipsoids). Such an assumption is a generalization of the 
strong isotropy hypothesis for the case of ellipsoidal anisotropies of one orientation [2, 
3]. Using these assumptions, the value of the integral is expressed by 

<<4)= .~,~ (<'~.>. - c ~  <~b~), 

3Kin -- 2Fro ,z(~) S(s) v m o(s) 6 . "  vm = '  
�9 r ~ i jhl  t ~-  ~m "~ ~3' 6 K  m .~_ 2~t m 

(i.io) 

where cf = VfV -l is the volume content of all inclusions. Sijk~ (s) are the components of 
the Eshelby tensor written in the laboratory frame of reference of the ellipsoids of direc- 
tion s [4]. 

Substitution of the expressions for Tij(r) and (i.i0) into (1.9) gives 

Here 

(1.11) 

D(S) ~-~. 2 
= ( I ~ z  + ~ i J ~ u  , L~,I  = K,~,~, - -  T P~,/" 

By multiplying (i. Ii) by c s and summing over all possible orientations of the ellipsoids, 
we can write the equations for the deformation rates averaged over Vf: 

<~u>: = ~ ~vuk~. (i. 12) 
C jCm s ~ l  

S o l v i n g  t h e  t e n s o r  e q u a t i o n s  ( 1 . 1 2 )  f o r  < s i j > f ,  we o b t a i n  

(eu) /  = au~z (ekz), 

w h e r e  

(1.13) 

aijhz ( i u p  q + -1 . ~--- R i j p q  ) R p q h l ,  

Rij~z -= 1 s c ~(~) �9 

cjcm s~ijkl~ Cm ~ ~ - -  Cj. 

Substituting (1.9) and (1.13) into (1.8), we find the macroscopic law of elastic-plastic 
deformation for the composite material in question: 

$ 

<~> = E~sk~ (e~,s) <~k~> 

(Eijk~ ~ = 2BmIijk~ + 6ij@k~X m + cf(2[B]lijpq + 6ij6pq[k])a 
moduli tensor). 

The system of equations for the macroscopic deformation of a composite (i.ii), (1.13), 
and (1.14) contains, along with the macroscopic quantities <oij> , <sij> , the components of 
the deformation tensors <Eij>m, f. To compute these it is necessary to assign a form to the 
plastic modulus functions Bm,f(e), which is determined according to the deformation proper- 
ties of the component materials. 

In the case where the Bm,f are constants, (i.ii), (1.13), and (1.14) coincide with the 
well-known results for elastic composites containing ellipsoidal inclusions [4]. 

2. An important special case of the general relations (1.14) is a composite material 
model in which the ellipsoidal inclusions are equiprobably oriented. The volume contents 

(1.14) 

pqk~ is the effective plastic 
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of the ellipsoids of all directions in this composite are identical (c I = c 2 = .,. = Cn), 

~C ~(s) so that the fourth rank tensor s~ijhl is isotropic and can be represented in the form [5] 

C ~(s) ,Wjkl = cj (I~j~z~ -- 6ijShz~). 
s=i (2.1) 

Here a = (3Qpqpq - Qppqq)/15; ~ = (Qpqpq - 2Qppqq)/15 are the invariants of the tensor 

Qijk~" Substituting (2.1) into (1.13), (1.14) and separating the deviatoric and volume 

parts, we find the deformation averaged over the inclusions Vf: 

(2.2) 

Relation (1.14) takes the form 

(su) = 2F*(e~,f) (eu>, (%,p > = 3K*(e~j) (epp >, 
c17 cp~ , K * = K m + [ K ]  cm§ F * = F - , + [ ~ ] c , . + ~ 9  , ?=cz--31~ 

(2.3) 

(D*, K* are the effective plastic moduli of the isotropic composite). Relations (2.3) must 
be supplemented by equations for the relative values of em, f. From (2.2) and the mechanical 
mixing rule we have 

I a 
em= c m ~ e ,  el cm+ac---------le. ( 2 . 4 )  

We apply (2.3) and (2.4) to the calculation of the elastic-plastic properties of com- 
posite samples prepared from sintered aluminum powders (SAP). Such composites, formed dur- 
ing sintering of aluminum powders, consists of an aluminum matrix in which particles of 
aluminum oxide AI203 are randomly distributed. These particles are plates of thickness h = 
0.055 ~m and linear dimension L = 10-16 ~m [6]. We approximate the oxide particles by el- 
lipsoids of revolution (oblate spheroids) with a semi-axis ratio of g = hL -I. The com- 
ponents of the Eshelby tensor are expressed in this case by elementary functions, and the 
procedure for computing the invariants ~ and ~ is easily carried out on a computer [7]. 

We construct a load-extension curve for this composite using (2.3) and (2.4). Equation 
(2.3) for uniaxial extension takes the form 

9K*~* 
<Ol1> --  4K* + ~* <811>" ( 2 .  5) 

We will assign a form to the plastic moduli functions Dm, f(e). In accordance with [i], 
parts of the load-extension curve for the aluminum matrix are approximated by an exponential 
dependence, for which 

( 2 . 6 )  

I C=o, ooJ 

~ MPa O~OO55 
500 ~ \0~ 004 

100 

Fig. 1 
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Here G m is the shear modulus; k m is the limiting shear stress for this part of the curve 
(the flow limit). We will consider the inclusion material (high strength aluminum oxide 
particles with large moduli) as ideally elastic throughout the deformation process: ~f = 
const. Equations (2.4)-(2.6) were solved numerically by computer using the method of suc- 
cessive approximations. 

Figure i displays a comparison of theoretical and experimental load-extension curves 
for an SAP composite (14% A1203). The experimental results, taken from [8], are shown as 
points in Fig. I. The computed values from formulas (2.4)-(2.6) are shown as solid lines. 
The calculated quantities are: E m = 71GPa; Ef = 2500 GPa; v m = 0.34; ~f = 0.2; k m = 25 
MPa; cf = 0.14. 
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STABILITY OF A VISCOELASTIC ROD WITH A SPORADIC LONGITUDINAL LOAD 

A. D. Drozdov and V. B. Kolmanovskii UDC 539.3 

The stability in an infinite time interval is studied for a viscoelastic rod com- 
pressed by a sporadic force. Rod bending is considered in a dynamic arrangement. Stabil- 
ity conditions are formulated in a root-mean-square for a viscoelastic rod with an arbitrary 
form of degree of stress relaxation and different types of end fastening. It is shown that 
with fulfillment of the conditions obtained a viscoelastic rod is stable, but a correspond- 
ing elastic rod with a long-term elasticity modulus is unstable. Questions of stability 
for a rod made of aging viscoelastic material with an arbitrary relaxation nucleus were 
considered in [i, 2]. The problem was studied in a quasistatic arrangement with a deter- 
ministic compressive load. A review of studies of the stability of viscoelastic struc- 
tural elements is contained in [3]. Stability conditions for elastic bodies with a spor- 
adic load are given in [4]. The stability elastic and viscoelastic rods with a sporadic 
longitudinal load is analyzed in [5-7]. Adequate stability conditions for viscoelastic 
rods are obtained in this work by means of the second Lyapunov method for a system with 
an aftereffect. 

i. Model of a Viscoelastic Body. Before application of an external load the body 
is in a natural condition, and at instant of time t = 0 a force is applied to it under whose 
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